1

1.1

A partir das aulas T ver a seguinte tabela:

Characteristic Declinations, δ, the Declinations on Which the Extraterrestrial Irradiation Is Identical to Its Monthly Average Value

Month	Date	δ (degrees)	Day number d_n
January	17	-20.84	17
February	14	-13.32	45
March	15	-2.40	74
April	15	+9.46	105
May	15	+18.78	135
June	10	+23.04	161
July	18	+21.11	199
August	18	+13.28	230
September	18	+1.97	261
October	19	-9.84	292
November	18	-19.02	322
December	13	-23.12	347

^a Characteristic declinations are slightly but only slightly variable with latitude. This table is based on 35° N latitude. At a given latitude the extraterrestrial irradiation is a function of both δ and E_0 . For solstice months (June and December) two values of δ_c are obtainable, at 20 days apart.

Para março, a declinação característica é:

$$\delta_{\rm c} = -2.40^{\circ}$$

Sabemos que o comprimento do dia angular é entre o nascer e pôr-do-sol.

$$\omega_{\rm s} = \cos^{-1}(-\tan\phi\tan\delta)$$

Ou seja, o comprimento do dia é:

$$2\omega_{\rm s} = 2\cos^{-1}(-\tan\phi\tan\delta)$$

Convertendo em horas, sabendo que o Sol percorre 15°/h temos que o comprimento do dia é de:

$$N_{\rm d} = \frac{2\omega_{\rm s}}{15^{\circ}} = \frac{2}{15} \cos^{-1}(-\tan\phi \tan\delta)$$

Calculando:

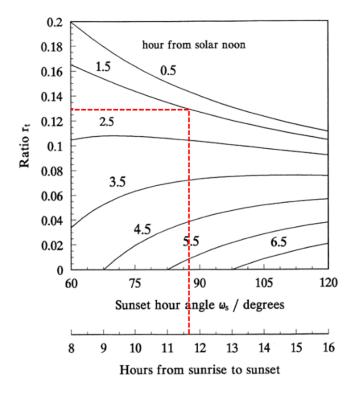
$$N_{\rm d} = \frac{2}{15} \cos^{-1}(-\tan\phi \tan\delta_{\rm c})$$
$$\delta_{\rm c} = -2.40^{\circ}$$

$$\phi = 45.5^{\circ}$$

$$N_{\rm d} = \frac{2}{15} \cos^{-1}(-\tan 45.5^{\circ} \tan -2.40^{\circ}) = 11.67 \text{h}$$

A pergunta pede a radiação entre as 10h e 11h, ou seja, a média deste intervalo de tempo é 10h30. Esta hora fica a 1h30 do meiodia-solar.

A partir da seguinte figura podemos encontrar o rácio de radiação on intervalo de tempo.



O eixo horizontal indica qual o ângulo que o Sol se poe no respectivo dia. No mesmo eixo tem o comprimento do dia. Podemos assim desenhar uma linha vertical que depois se cruza com a linha de 1.5h do meio-dia-solar. O rácio $r_{\rm t}=0.13$. Como estamos a descrever o dia característico para o respectivo mês, podemos escrever:

$$r_{\rm t} = 0.13$$

A radiação global média diária é $\overline{G_t} = 12.5 \text{ MJ/m}^2/\text{dia.ia}$. Ou seja, para o intervalo de tempo temos que:

$$r_{\rm t} = \frac{I_{\rm t}}{G_{\rm t}}$$

E para o dia característico:

$$r_{\rm t} = \frac{I_{\rm t}}{\overline{G_{\rm t}}}$$

Ou seja:

$$I_{\rm t} = \overline{G_{\rm t}} \times r_{\rm t} = 12.5 \text{ MJ/m}^2/\text{dia} \times 0.13 = 1.63 \text{MJ/m}^2/\text{hr}$$

Sem recurso à figura acima, podemos calcular directamente. Nas aulas teóricas, onde a figura é apresentada, também é apresentada

a seguinte equação:

$$\begin{split} r_{\rm t} &= \frac{I_{\rm t}}{G_{\rm t}} = \frac{I_0}{G_0} (a_2 + b_2 \cos \omega_{\rm I}) \\ a_2 &= 0.409 + 0.5016 \sin(\omega_{\rm s} - 60^\circ) \\ b_2 &= 0.6609 - 0.4767 \sin(\omega_{\rm s} - 60^\circ) \end{split}$$

Para o respectivo dia podemos calcular

 I_0 pode ser calculado com a seguinte equação:

$$I_0 = I_{\rm sc} E_0 \cos \delta \cos \phi (\cos \omega_{\rm i} - \cos \omega_{\rm s})$$

 $I_{\rm sc}$ é a radiação recebida no intervalo de tempo de 1h num ângulo perpendicular ao Sol. Ou seja, a partir do constante solar de S_0

1366W/m² temos que:

$$I_{\rm sc} = S_0 \times 60 \text{s} \times 60 \text{min} = 1366 \text{W/m}^2 \times 60 \text{s} \times 60 \text{min} = 4917 \text{KJ/m}^2/\text{hr}$$

Vamos assumir que a excentricidade da órbita da Terra é de $E_0 = 1.01$ para esta altura do ano.

O ângulo hora solar em questão às 10h30 é de $\omega_i = 22.5^{\circ}$.

O pôr-do-sol ocorre:

$$\omega_{s} = \cos^{-1}(-\tan\phi\tan\delta)$$

$$\omega_{s} = -\tan45.5^{\circ}\tan-2.40^{\circ} = 87.6^{\circ}$$

Ou seja, para o dia característico em que $\delta_{\rm c}=-2.40^{\circ}$:

$$I_0 = I_{\rm sc} E_0 \cos \delta \cos \phi \, (\cos \omega_{\rm i} - \cos \omega_{\rm s})$$

$$I_0 = 4.917 {\rm KJ/m^2/hr} \times 1.01 \times \cos -2.40^\circ \cos 45.5^\circ (\cos 22.5^\circ - \cos 87.6^\circ) = 3.065 {\rm KJ/m^2/hr}$$

 G_0 pode ser calculada com a seguinte equação:

$$G_0 = \frac{24}{\pi} I_{\rm sc} E_0 \cos \delta \cos \phi \quad \sin \omega_{\rm s} - \frac{\pi}{180} \omega_{\rm s} \cos \omega_{\rm s}$$

Lembrando que estamos a utilizar a declinação característica:

$$G_0 = \frac{24}{\pi} \times 4917 \text{KJ/m}^2 / \text{hr} \times 1.01 \times \cos -2.40^\circ \times \cos 44.5^\circ \quad \sin 87.6^\circ - \frac{\pi}{180^\circ} 87.6^\circ \times \cos 87.6^\circ$$

$$G_0 = 26,200 \text{KJ/m}^2 / \text{dia} = 26.2 \text{MJ/m}^2 / \text{dia}$$

Para aplicar a seguinte equação:

$$r_{\rm t} = \frac{I_{\rm t}}{G_{\rm t}} = \frac{I_0}{G_0} (a_2 + b_2 \cos \omega_{\rm I})$$

Vamos calcular os respectivos coeficientes:

$$a_2 = 0.409 + 0.5016 \sin(\omega_s - 60^\circ)$$

 $a_2 = 0.409 + 0.5016 \sin(87.6^\circ - 60^\circ) = 0.641$

$$b_2 = 0.6609 - 0.4767 \sin(\omega_s - 60^\circ)$$

$$b_2 = 0.6609 - 0.4767 \sin(87.6^\circ - 60^\circ) = 0.440$$

Portanto, o rácio é (e lembrando que estamos a utilizar a declinação característica):

$$r_{\rm t} = \frac{I_{\rm t}}{G_{\rm t}} = \frac{I_0}{G_0} (a_2 + b_2 \cos \omega_{\rm I})$$

$$r_{\rm t} = \frac{3,065 \text{KJ/m}^2/\text{hr}}{26,200 \text{KJ/m}^2/\text{dia}} (0.641 + 0.440 \cos 22.5^\circ) = 0.122$$

Agora já estamos na posição de calcular a radiação no respectivo intervalo de tempo:

$$\overline{G_{\rm t}}=12.5~{
m MJ/m^2/dia}$$

$$r_{
m t}=\frac{I_{
m t}}{G_{
m t}}$$

$$I_{
m t}=r_{
m t}G_{
m t}=0.122\times12.5~{
m MJ/m^2/dia}=1.53{
m MJ/m^2/hr}$$

O valor calculado é similar ao que foi estimado a partir da figura acima. Claro está, existem erros de arredondamento que se acumulam.